The Crystal and Molecular Structure of $bis-(\beta-aminobutyrato)$ -Copper (II) dihydrate, Cu(C₄H₈NO₂)₂.2H₂O

BY ROBERT F. BRYAN, ROBERTO J. POLJAK* AND KEN-ICHI TOMITA†

Biology Department, Massachusetts Institute of Technology, Cambridge 39, Massachusetts, U.S.A.

(Received 12 September 1960 and in revised form 6 January 1961)

Crystals of bis-(β -aminobutyrato)-copper (II) dihydrate, Cu(C₄H₈NO₂)₂.2 H₂O, are triclinic, the unit cell dimensions being:

 $a = 6 \cdot 69 \pm 0 \cdot 02, \ b = 5 \cdot 06 \pm 0 \cdot 02, \ c = 9 \cdot 87 \pm 0 \cdot 04 \text{ Å};$ $\alpha = 87^{\circ} \ 30' \pm 45', \ \beta = 104^{\circ} \ 55' \pm 50', \ \gamma = 105^{\circ} \ 45' \pm 50'.$

The proposed space group is $P\overline{1}, Z = 1$.

The molecular structure of the complex has been determined by X-ray diffraction methods from three, two-dimensional, electron-density projections and refined by least-squares analysis. Each Cu atom lies at the centre ($\overline{1}$) of a distorted octahedron whose mid-plane is defined by the $-NH_2$ group and one carboxyl oxygen of each of two acid residues (*trans*- configuration, Cu-O = $2 \cdot 00 \pm 0 \cdot 02$, Cu-N = 1.99 ± 0.02 Å) the Cu atom thus forming part of two six-membered ring systems. Each remaining apex of the octahedron is occupied by a water molecule, Cu-H₂O = 2.45 ± 0.02 Å.

Interatomic distances within the molecule are normal (e.s.d. C-C=0.03 Å) and the molecules are held together in the *a* and *b* directions by hydrogen bonds. Normal van der Waal's forces operate in the *c* direction.

Introduction

This paper describes part of an investigation of the structures of the copper (II) complexes formed by various ω -amino acids. Thus, Tomita & Nitta have used X-ray diffraction techniques to determine the structures of the cupric complexes of glycine and of β -alanine (Tomita, 1960*a*, *b*; Tomita & Nitta, 1960). Here we present the results of an analysis of the crystal and molecular structure of $bis(\beta$ -aminobutyrato)-copper (II) dihydrate, Cu(C₄H₈NO₂)₂.2 H₂O.

Experimental

The complex is prepared by heating in a water bath for about two hours an aqueous solution of β -aminobutyric acid with an excess of freshly prepared cupric oxide. The resultant blue solution is filtered and the complex crystallizes from the filtrate as well formed deep-blue plates, roughly hexagonal in shape, elongated along a, and with (010) developed. The crystals lose water on exposure to the air and were enclosed in thin-walled Lindemann glass capillaries during the X-ray photography.

Crystal data

The unit cell dimensions and space group were determined from 30° precession photographs taken with Mo $K\alpha$ radiation ($\lambda = 0.7107$ Å). The crystals belong to the triclinic system with:

 $a = 6.69 \pm 0.02, \ b = 5.06 \pm 0.02, \ c = 9.87 \pm 0.04 \text{ Å};$ $\alpha = 87^{\circ} 30' + 45', \ \beta = 104^{\circ} 55' \pm 50', \ \gamma = 105^{\circ} 45' \pm 50'.$

The observed density (by flotation) is 1.60_7 g.cm.⁻³, and that calculated assuming one formula weight per unit cell is 1.61_3 g.cm.⁻³. The space group was assumed to be $P\overline{1}$ with the copper atom occupying a centre of symmetry.

Intensity data

These were collected from 30° precession photographs taken, using Mo radiation, about the three crystal axes. Timed exposures were used to ensure that each independent reflexion was recorded within a measurable range of intensity, where possible more than once. Visual estimates of intensity were made using a specially prepared scale. The range of diffracted intensity was 1000 to 1. 192 reflexions were recorded and measured in (h0l), 127 and 96 in (0kl) and (hk0) respectively. Two crystals were used in recording the diffraction pattern, each of approximate reflecting crosssection 0.3×0.1 mm. The linear absorption coefficient of the complex for Mo $K\alpha$ radiation is 18.4 cm.⁻¹ and so errors due to absorption would be expected in the measured intensities. However, since the aim of the analysis was to determine the configuration of the complex rather than very accurate molecular dimensions, no allowance was made for this effect. Lorentz and polarization corrections were applied and the corrected intensities reduced to relative structure amplitudes.

Structure determination

The presence of a copper atom at a centre of symmetry

^{*} Present address: Davy Faraday Laboratory, The Royal Institution, London, W. 1.

[†] On leave of absence from the Faculty of Science, Osaka University, Osaka, Japan.

in the crystal makes it possible to apply the heavy atom method of phase determination with great effectiveness. A preliminary calculation of the expected contribution of the copper atom to the structure factors in all three zones showed that, in all but a very few instances, it was sufficiently large to unambiguously determine the sign of each reflexion. Accordingly, Fourier syntheses were calculated for each of the three principal zones using all reflexions of supposedly definite positive sign and from the resulting electron-density projections it was a simple

Fig. 1. Final electron-density projections. The contour levels are at equal but arbitrary intervals (approximately 1 e. $Å^{-2}$). The coordination octahedron is outlined by the broken lines, the acid residues being indicated by the solid lines.

matter to establish the position and arrangement of all of the atoms in the unit cell. A complete structure factor calculation based on these positions showed only about half a dozen reflexions to be of negative sign and a second round of Fourier syntheses gave the final electron-density projections shown in Fig. 1. Excluding unobserved reflexions the value of the index R was 0.26 at this stage.

Refinement of the structure

A least-squares refinement of the averaged atomic parameters derived from the Fourier maps was carried out on an IBM 704 data processing machine using the crystallographic least-squares refinement program of Busing & Levy. All 400 or so equatorial reflexions were included in this refinement; to reduce absorption errors a choice of axial reflexions was made, h00 and 00l being chosen from (h0l) and 0k0 from (hk0). The weighting scheme proposed by Hughes (1941) was used and individual isotropic temperature factors were employed to modify the atomic scattering functions which were, for the light atoms, those given by McWeeny (1951), and, for copper, that given by Berghuis et al. (1955). No allowance was made for the presence of hydrogen atoms in the structure. After the fourth cycle of the refinement process the shifts in the atomic parameters were less than one tenth the standard deviations calculated by the program and the values of the parameters taken from this cycle were considered as final. They are listed in Table 1

Table 1. Atomic parameters with their calculated standard deviations

Atom	x/a	y/b	z/c	$\sigma(r)$ (Å)	B	$\sigma(B)$
Cu	0.0000	0.0000	0.0000		4.23	0.22
N	0.0252	0.1842	0.1803	0.018_{1}	5.86	0.50
O(1)	0.2427	-0.1636	0.0882	0.014_{2}	6.60	0.44
O(2)	0.5765	-0.1175	0.2156	0.014_{2}	6.97	0.47
O(3)	0.2365	0.4025	-0.0791	0.014_{4}	8.41	0.41
C(1)	0.4073	-0.0527	0.1910	0.023_{3}	4.78	0.63
C(2)	0.3940	0.1556	0.2882	0.022_{9}	5.52	0.68
C(3)	0.1735	0.1283	0.3046	0.022_{5}	5.49	0.65
C(4)	0.1797	0.3090	0.4221	0.023_{3}	7.55	0.62

Table 2. Interatomic distances and angles within the crystal with their estimated standard deviations (See also Figs. 3. 4 and 5)

		(
Distance	d	$\sigma(d)$	Angle		σ
Cu-O(1)	$2 \cdot 00_4$ Å	0·014 Å	O(3)–Cu–N	93° 32′	12'
Cu–N	1.99^{-7}_{-7}	0.018	O(1)-Cu-N	91° 53′	12'
Cu-O(3)	$2 \cdot 45_{3}$	0.014	O(1)-Cu-O(3)	92° 58′	19′
O(1) - C(1)	1.30_{3}	0.027	O(1) - C(1) - O(2)	122° 42′	2° 10′
O(2) - C(1)	1.224	0.027	O(1)-C(1)-C(2)	120° 55′	2° 37′
C(1) - C(2)	1.49_{1}	0.033	O(2)-C(1)-C(2)	116° 57′	2° 28′
C(2) - C(3)	1.49_{4}	0.033	C(1)-C(2)-C(3)	113° 1'	1° 51′
C(3) - C(4)	1.49_{1}	0.033	C(2)-C(3)-C(4)	111° 8′	1° 46′
C(3)-N	1.43_{6}	0.030	C(4) - C(3) - N	108° 42'	2° 21′
$O(3) \cdots O(1)$ ^{III}	2.78_{8}	0.020	C(2)-C(3)-N	113° 35′	2° 38′
$O(3) \cdots O(2)$ II	2.73_{2}	0.020	$\mathbf{I} = \overline{x}, \ \overline{y}, \ \overline{z}$		
$O(3) \cdots N^{\Pi I}$	3.05_{7}	0.023	II = x + 1, y, z		
$N \cdots O(2)^{\nabla}$	3.07_{9}	0.023	$III = \bar{x}, \bar{y} + 1, \bar{z}$		
$N \cdots O(1)$ I	2.77_{9}	0.023	IV = x, y + 1, z		
$N \cdots O(1)$	2.87_{2}	0.023	V=x-1, y, z		
$O(3) \cdots O(1)$	3.24^{-}_{-}	0.020			

Table 3. Table of observed and calculated structure factors for the non-zero reflexions

		77										-
n k l	$ F_0 $	F_{c}	n k l	$[F_0]$	F'c	1 1	n k l	$ F_0 $	F'c	h k l	$ F_0 $	F'c
$02 \ 00 \ 00$	125	130	+010500	131	140	-0	7 00 03	79	79	$+02\ 00\ 08$	149	148
03 00 00	153	152	-010500	100	114	+0	8 00 03	41	57	-020008	125	112
04 00 00	241	230	$\pm 02.05.00$	29	49		8 00 03	74	60	$\pm 03.00.08$	57	56
05 00 00	252	250	02 05 00	120	199		0 00 00	17	00	02 00 08	107	990
	303	330	-020500	104	120	1				-03 00 08	197	230
06 00 00	34	42	+030500	123	140	0	$0 \ 00 \ 04$	221	195	$+04\ 00\ 08$	112	98
$07 \ 00 \ 00$	112	116	$+04\ 05\ 00$	48	56	+0	$1 \ 00 \ 04$	75	74	$+05\ 00\ 08$	33	21
08 00 00	69	68	$-04\ 05\ 00$	188	197		1 00 04	102	105	$-06\ 00\ 08$	80	108
00 00 01	300	256	$-05\ 05\ 00$	119	101		9 00 04	400	274	-070008	34	57
			- 06 05 00	46	44	+0	2 00 04	409	3/4	- 08 00 08	49	71
			07 05 00	0	40	0	20004	312	301	- 00 00 00	70	71
00 01 00	562	571	-07 05 00	33	40	+0	$3 \ 00 \ 04$	161	169			
$+01\ 01\ 00$	99	- 86	$-08\ 05\ 00$	34	37	-0	$3\ 00\ 04$	248	267	00 00 09	134	121
-01 01 00	345	311				+0	4 00 04	107	103	+010009	173	143
+020100	371	338	00.06.00	86	97	1 ±0	5 00 04	139	136	+020009	81	82
02 01 00	444	451		00	07		6 00 04	107	75		76	04
-02 01 00	444	401	+01 00 00	00	97	+0	0 00 04	107	75	-02 00 09	70	04
+030100	110	102	-010600	63	61	-0	$6\ 00\ 04$	56	65			
$-03\ 01\ 00$	404	408	$-02\ 06\ 00$	90	90	+0	$7 \ 00 \ 04$	101	83	$+03\ 00\ 09$	57	65
$+04\ 01\ 00$	157	169	$-03\ 06\ 00$	50	42	-0	7 00 04	79	91		41	41
+05.01.00	230	213	- 04 06 00	126	122	0	8 00 04	33	52		41	190
- 05 01 00	225	220	- 05 06 00	114	01		0 00 01	00	02	-040009	98	130
- 03 01 00	230	440	-03 00 00	114	91					$+05\ 00\ 09$	41	41
+060100	47	39	- 06 06 00	73	63	0	$0 \ 00 \ 05$	185	188	$-05\ 00\ 09$	80	96
$-06\ 01\ 00$	129	121				+0	1 00 05	192	192	$-07\ 00\ 09$	53	67
$+07\ 01\ 00$	90	75	- 02 07 00	48	45	-0	1 00 05	153	144		- •	
-070100	192	171		94	41	-0	0000	950	957	00 00 10	914	100
- 08 01 00	114	06	-03 07 00	34	41	+0	2 00 05	300	307	00 00 10	214	190
-08 01 00	114	90	-040700	59	63	-0	$2\ 00\ 05$	473	484	$+01\ 00\ 10$	99	66
						+0	$3\ 00\ 05$	217	220	$-01\ 00\ 10$	80	79
$00 \ 02 \ 00$	129	129	$+01\ 00\ 01$	39	43	+0	$4\ 00\ 05$	71	79	$-02\ 00\ 10$	126	158
+010200	202	188	$-01\ 00\ 01$	452	455	-0	4 00 05	99	109	$+03\ 00\ 10$	109	96
-01 02 00		9	± 020001	100	07	μů	5 00 05	151	124	$\pm 04 00 10$	63	51
	070	071		000	97		= 00 05	107	104		00	00
+020200	219	271	-02 00 01	220	239	-0	5 00 05	107	129	-05 00 10	04	90
-020200	148	154	$+03\ 00\ 01$	242	236	+0	$6\ 00\ 05$	89	80	-07 00 10	70	89
-03 02 00	433	492	$-03\ 00\ 01$	348	348	-0	$6\ 00\ 05$	112	122			
$+04\ 02\ 00$	115	116	$+04\ 00\ 01$	343	320	+0	$7\ 00\ 05$	102	78	00 00 11	141	114
-040200	109	109	$-04\ 00\ 01$	366	326	-0	7 00 05	103	121	+010011	81	63
$\pm 05.02.00$	190	190	1 05 00 01	152	180	Ň	8 00 05	22	20		116	őő
	120	129		100	100		0000	00	20		110	00
-05 02 00	84	69	-05 00 01	190	139				- · ·	+020011	18	10
+060200	48	60	$-06\ 00\ 01$	96	95	0	0 00 06	89	95	$-02\ 00\ 11$	58	69
$-06\ 02\ 00$	91	71	$+07\ 00\ 01$	79	71	+0	$1 \ 00 \ 06$	302	293	$+03\ 00\ 11$	105	72
$-07\ 02\ 00$	135	137	$-07\ 00\ 01$	79	88	-0	$1\ 00\ 06$	109	128	$-04\ 00\ 11$	72	114
-08.02.00	124	103	+08.00.01	30	46	+0	2 00 06	280	266	-050011	80	83
00 02 00		100	08 00 01	193	197		2 00 06	250	494	00000	00	00
00.00.00	40	0	-00 00 01	120	121	-0	2 00 00	010	100	00 00 10	70	
00 03 00	40	3			_	+0	3 00 06	210	190	00 00 12	19	
+010300	117	97	00 00 02	52	9	-0	$3\ 00\ 06$	235	217	$+01\ 00\ 12$	96	75
$-01\ 03\ 00$	261	261	$+01\ 00\ 02$	472	534	- 0	4 00 06	144	159	$-01\ 00\ 12$	140	125
$+02\ 03\ 00$	122	135	$-01\ 00\ 02$	294	299	+0	$5\ 00\ 06$	80	80	$+02\ 00\ 12$	78	48
-020300	181	150	$\pm 02.00.02$	30	94	-0	5 00 06	147	127	-030012	79	78
	100	100		115	117		2 00 00	104	00	04 00 12	70	100
+030300	120	122		110	-117	+0		104	00		18	100
-030300	114	88	$+03\ 00\ 02$	129	129	0	6 00 06	138	165	$-05\ 00\ 12$	75	82
$+04\ 03\ 00$	116	108	$-03\ 00\ 02$	144	148	+0	7 00 06	58	56	$-06\ 00\ 12$	82	75
$-04 \ 03 \ 00$	59	65	$+04\ 00\ 02$	171	179	0	7 00 06	112	121			
+050300	47	44	$-04\ 00\ 02$	460	445	- 0	8 00 06	33	43	00 00 13	64	54
-050300	125	106	-050002	106	121					+010013	41	41
± 060300	61	76	± 060002	119	105		0.00.07	60	69	-01 00 13	74	73
	100	100		190	140			150	109		60	61 61
-000300	133	120	-06 00 02	130	142	+0	1 00 07	150	162	-04 00 13	08	01
-07 03 00	56	56	$+07\ 00\ 02$	34	48	-0	1 00 07	253	253	$-05\ 00\ 13$	51	57
			$+08\ 00\ 02$	61	60	+0	2 00 07	151	150			
+010400	129	160	$-08\ 00\ 02$	72	80	~ 0	2 00 07	193	193			
-010400	177	174		• =		1 ± 0	3 00 07	56	52	00 ± 01.01	234	221
$\pm 02 04 00$	107	107	00.00.02	119	116		0007	201	997		261	370
	101	107	00 00 03	112	110			201	221		000	010
-04 04 00	256	238	+010003	199	228	$+0^{-1}$	± 00 07	80	02	00 + 02 01	20Z	249
+030400	140	164	$-01\ 00\ 03$	319	307	- 04	£ 00 07	77	63	00 - 02 01	323	297
$-03\ 04\ 00$	88	91	$+02\ 00\ 03$	58	38	+ 0	$5\ 00\ 07$	78	69	00 + 03 01	222	229
+040400	64	77	$-02\ 00\ 03$	98	92	0	5 00 07	78	100	00 - 03 01	48	-26
-04 04 00	194	103	1 12 00 02	194	199	1 1	3 00 07	110	74	00 . 04 01	197	159
	144	100		194	1 <i>44</i> F1	+0	2 00 07	100	105		241	90
+ 00 04 00	33	42	-03 00 03	93	/1	-0		102	199		03 010	30
$-05\ 04\ 00$	47	40	$+04\ 00\ 03$	127	134	-0'	7 00 07	43	87	00 + 05 01	219	190
$+06\ 04\ 00$	31	69	$-04\ 00\ 03$	38	78	- 0	8 00 07	49	84	00 - 05 01	112	106
-060400	113	95	$-05\ 00\ 03$	129	124					00 + 06 01	74	76
-07.04.00	67	68	+ 06 00 03	148	136	0	80.00.0	40	- 38	00 - 06.01	53	53
J. JE UU				111	190			00	75			
00.05.00	0.0	110		111	129	+0		90 101	10	00 / 01 00	075	000
00 05 00	93	110	+070002	41	4Z	-0	1 00 08	101	102	100+0102	210	200

h	${k}$	l	$ F_o $	F_{c}	1	h	${k}$	l	$ F_o $	F_{c}	
00	-01	02	338	-376		00	-05	03	110	125	
00	+02	02	281	277		00	+06	03	87	76	
00	-02	02	136	140	i	00	-06	03	51	61	
00	+03	02	389	427							Í
00	-03	02	195	170		00	+01	05	332	345	
00	+04	02	175	188		00	-01	05	165	182	
00	04	02	155	182		00	+02	05	266	247	
00	+05	02	78	89		00	-02	05	134	142	
00	-05	02	149	144		00	+03	05	292	256	
00	+06	02	41	40		00	-03	05	180	177	
00	-06	02	74	74		00	+04	05	127	107	
						00	-04	05	208	211	
00	+01	03	277	261		00	+05	05	54	33	
00	-01	03	59	30		00	-05	05	68	73	
00	+02	03	218	226		00	+06	05	58	38	
00	-02	03	186	167							
00	+03	03	177	190	1	00	+01	06	338	353	
00	-03	03	132	130		00	-01	06	144	165	
00	-04	03	264	297		00	+02	06	264	267	
					l l	00	-02	06	115	83	

together with their calculated standard deviations. Table 2 gives the values of various interatomic distances and angles within the crystal, also with their calculated standard deviations. Table 3 lists the values of $|F_o|$ and F_c for the measured non-zero reflexions. The value of R for the reflexions listed is 0.11.

Description of the structure

A representation of the structure of one molecule of the complex is shown in Fig. 2. Each copper atom is associated with two molecules of β -aminobutyric acid and two molecules of water. The coordination of atoms around the copper is octahedral. The mid-plane of the octahedron is defined by Cu, and O(1) and N of one acid residue. The remaining two apices of the octahedron are each occupied by a water molecule. All distances and angles within the coordination octahedron are normal, being comparable to those found in similar molecules (Orgel & Dunitz, 1957). The observed distortions in the octahedron are in accord with those expected on the basis of the theoretical considerations put forward by Orgel (1956) on the basis of the Jahn-Teller effect.

Other bond lengths and angles within the molecule are also normal, none of the observed bond lengths being significantly different from those commonly accepted (Sutton, 1958). The four carbon atoms of one acid residue deviate from the plane of equation

$$0.1307X - 0.7042Y + 0.6972Z - 1.7233 = 0$$

by amounts ranging from 0.06 to 0.07 Å ($\sigma(r)C = 0.02_3$ Å). The torsion angle C(1)-C(2).C(3)-N is 66°49', establishing the *gauche*-configuration of the β -amino-butyric acid residue. This configuration is similar to that found for copper(II)-bis-(β -alanine) hexahydrate (Tomita, 1960b).

The inter-molecular forces are of two kinds. In the c direction, as can be seen from Fig. 3, normal van der

h k l	$ F_{0} $	F_c	h k /	$ F_{o} $	F_c
00 + 03 05	178	185	00 - 02 08	206	200
00 - 0306	51	38	00 + 03 08	94	87
00 + 04 06	135	142	00 - 03 08	129	165
00 - 04 06	127	107	00 + 04 08	114	122
00 + 0506	53	59	00 + 05 08	112	74
00 - 05 06	84	86			
00 - 06 06	66	64	00 + 01 09	101	125
			00 - 01 09	119	122
00 + 01 07	33	31	00 + 02 09	111	109
00 - 01 07	239	228	00 - 02 09	086	103
00 + 02 07	35	25	00 + 03 09	54	49
00 - 02 07	175	158	00 + 04 09	51	48
00 + 03 07	130	127			
00 - 03 07	112	134	00 + 01 10	99	132
00 + 04 07	135	168	00 - 01 10	139	152
00 + 05 07	86	89	00 + 02 10	99	111
00 + 01 08	36	50	00 + 01 11	58	84
00 - 01 08	238	215	00 - 01 11	63	86
00 + 0208	53	63			

Fig. 2. Representation of one molecule of bis-(β -aminobuty-rato)-copper (II) dihydrate showing bond lengths and angles.

Fig. 3. Arrangement of molecules in the (010) projection showing *inter*-molecular approaches.

——— Chemical bonds, $\rightarrow \rightarrow \rightarrow \rightarrow$ possible hydrogen bonds, van der Waal's contacts.

Waal's forces operate, whilst in the a and b directions the structure is held together in addition by means of hydrogen bonds. A word of explanation is necessary in connection with the hydrogen bonding. The nitrogen atom of one molecule makes two short contacts with atoms in neighbouring molecules: $N \cdots O(2)(x-1, y, z)$ = 3.08 Å, and $N \cdots O(3)(\bar{x}, \bar{y}+1, \bar{z}) = 3.06$ Å. Fig. 4, however, shows that only $N \cdots O(2)$ can be a feasible hydrogen bond involving a hydrogen atom of the amino group if the configuration of the bonds about the nitrogen atom is held to be tetrahedral, the distortion involved in forming $N \cdots O(3)$ being prohibitive.

Fig. 4. Arrangement of atoms around the $-NH_2$ group. Bond types as indicated in Fig. 3.

Fig. 5. Arrangement of atoms about the water molecule. Bond types as in Fig. 3.

The hydrogen bond system involving the water molecule is rather interesting. Here there are three short approaches of neighbouring molecules to the water molecule: $O(3) \cdots N(\bar{x}, \bar{y}+1, \bar{z})=3.06$ Å (the same distance as discussed above), $O(3) \cdots O(1)$ (x, y+1, z) = 2.79 Å, and $O(3) \cdots O(2) (x+1, y, z) =$ 2.73 Å. Fig. 5 shows the arrangement of these various atoms relative to the bond Cu-O(3). Assuming the distribution of orbitals about the oxygen atom of the water molecule to be tetrahedral, it is apparent that any one of these approaches might represent a hydrogen bond, but that it is impossible to form all three bonds, or indeed any two, simultaneously. A bond to the amino group involving donation of a hydrogen atom from the water molecule may be ruled out owing to the steric repulsion offered to such a hydrogen atom by the hydrogen of the amino group. We therefore assume that the water molecule is so arranged in the crystal that each of the bonds of type $O-H \cdots O$ is formed with a probability $\frac{1}{2}$, or that it is free to rotate about the axis Cu-O and to achieve the same result on a time average basis. This latter alternative is perhaps the more likely when one notes that the value of the exponent B for the water molecule is 8.4. significantly higher than the corresponding values for the other oxygen atoms in the molecule, 6.6 and 7.0, and that the crystal also loses water readily on exposure to the air confirming that the water molecule is but loosely bound in the crystal.

Discussion

In forming complexes with α -amino acids, the cupric ion is commonly found to participate in the formation of five-membered ring systems. In the case of ω -amino acids, as the distance between the coordinating atoms in the acid residues increases, the ease with which complex formation occurs decreases, steric influences presumably inhibiting the formation of the larger rings. This analysis of the structure of copper (II) bis-(β -aminobutyrate) dihydrate shows that, as in the case of copper (II) bis-(β -alanine), the cupric ion may readily take part in the formation of a six-membered ring. We are at present examining the crystal structure of copper (II) bis_{γ} -aminobutyrate) dihydrate where a seven-membered ring system might be expected to occur. It is of some interest to discover whether the still larger rings, such as the eight-membered ring suggested by Nakahara et al. (1956) as occurring in copper (II) bis-(δ -aminovalerate), or the ninemembered ring proposed by Pfeiffer et al. (1952) for copper (II) bis-(hexamethylenediamine) perchlorate, do in fact occur, or whether the structure will be of the types shown below

Experiments designed to decide this question are planned.

During the period when this structure analysis was performed R. F.B. was in receipt of a Sloan Foreign Post-Doctoral Research Fellowship. R.J.P. took part in this work during tenure of an appointment supported by the International Cooperation Administration under the Visiting Scientists Program administered by the National Academy of Sciences of the United States of America. We gratefully acknowledge also financial support from the National Cancer Institute, Bethesda Md. Part of the necessary arithmetic was carried out at the MIT Computation Centre.

References

BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-

STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A.L. (1955). Acta Cryst. 8, 478.

HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.

MCWEENY, R. (1951). Acta Cryst. 4, 513.

- NAKAHARA, A., HIDAKA, J. & TSUCHIDA, R. (1956). Bull. Chem. Soc. Japan, 29, 925.
- ORGEL, L. E. (1956). J. Chem. Soc. p. 4756.
- ORGEL, L. E. & DUNITZ, J. D. (1957). Nature, Lond. 179, 462.
- РFEIFFER, Р., SCHMITZ, E. & ВÖHM, A. (1952). Z. anorg. Chem. 270, 287.
- SUTTON, L. E. (1958). Chemical Society Special Publication No. 11.
- TOMITA, K. (1960a, b). Bull. Chem. Soc. Japan. (In press.)
- TOMITA, K. & NITTA, I. (1960). Bull. Chem. Soc. Japan. (In press.)

Acta Cryst. (1961). 14, 1130

A Mathematical Technique for the Precision Determination of Lattice Parameters*

BY RICHARD E. VOGEL[†] AND CHARLES P. KEMPTER

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.

(Received 1 February 1960 and in revised form 20 March 1961)

A computer code has been developed for the precision determination of crystal lattice parameters, using the Hess method as a basis with the following modifications: (1) No approximations are made in the solution of the observation equation and (2) The method is extended to the hexagonal and orthorhombic crystal systems and to additional extrapolation functions. In the majority of the determinations, with randomly selected materials, the Hess approximation gave results comparable with the exact technique; however, because of certain restrictions the exact technique is recommended.

Introduction

The precision determination of lattice parameters is a powerful technique for basic studies of the solid state. Examples include the precise measurement of bond distances, true densities, thermal expansions, compressibilities, and solid-solution effects.

Graphical extrapolation methods for the elimination of systematic errors in lattice-parameter measurements have been treated by many investigators. Their correct usage has been discussed by Kempter (1959), and the most useful extrapolation functions tabulated as a function of Bragg angle.

Analytical methods have been discussed by Cohen (1935, 1936a, 1936b) and Hess (1951). These methods are more readily applicable than extrapolation methods to non-cubic crystal systems, but the complexity of the calculations necessitates the use of a computing

machine. Of the two analytical methods, the Hess method is preferable since it assigns statistical weights to the observed points. This weighting is a necessity since the weighting function increases tremendously as the Bragg angle approaches $90^{\circ} \theta$.

For the cubic system, using a Debye–Scherrer or symmetrical back-reflection focusing camera, Hess started his fitting procedure with the following general equation expressing the function F.

$$F = A_0 \alpha + K_0 \delta - \gamma , \qquad (1)$$

 $A_0 = 1/a_0^2;$

 $a_0 =$ the lattice parameter;

$$\alpha = \frac{1}{2}\lambda^2 n^2(h^2 + k^2 + l^2);$$
 $\lambda = \text{wave length},$
 $n = \text{an integer},$
 $hkl = \text{Miller indices};$

 $K_0 =$ the 'drift constant';

$$\delta = \Phi \sin \Phi$$
, the error term, which assumes
 $\Delta \Phi \propto \Phi$, where $\Phi = \pi - 2\theta$;
 $\gamma = 1 + \cos \Phi = 2 \sin^2 \theta$.

^{*} This paper is based on Los Alamos Scientific Laboratory Report LA-2317, April 1959.

[†] Present address: Kaman Corporation, Colorado Springs, Colorado.